MFR 300
Multifunction Relay / Measuring Transducer with CANopen / Modbus Communication

APPLICATIONS
The MFR 300 is a measuring transducer for monitoring single- and three-phase power systems. The MFR 300 has both voltage and current inputs for measuring an electrical power source. A digital processor makes it possible to accurately measure true RMS values, regardless of harmonics, transients or disturbing pulses. The primary measured and calculated values are transmitted via CANopen / Modbus protocol to a supervisory control system.

The MFR 300 performs monitoring functions for mains decoupling, including four freely configurable time-dependent undervoltage monitoring functions for FRT (fault ride-through).

The primary measured values of voltage and current are used to calculate the real, reactive, and apparent power and the power factor (cosφ) values.

The list of measured values includes:
- Measured
 - Voltage
 - Wye: \(V_{L1N} / V_{L2N} / V_{L3N} \)
 - Delta: \(V_{L12} / V_{L23} / V_{L31} \)
 - Frequency \(f_{L123} \)
 - Current \(I_{L1} / I_{L2} / I_{L3} \)
- Calculated
 - Average voltage \(V_{\text{avg},123} / V_{\text{min}} / V_{\text{max}} \)
 - Average current \(I_{\text{avg},123} / I_{\text{min}} / I_{\text{max}} \)
 - Real power \(P_{\text{total}} / P_{L1} / P_{L2} / P_{L3} \)
 - Reactive power \(Q_{\text{total}} \)
 - Apparent power \(S_{\text{total}} \)
 - Power factor (cosφ) \(L1 \)
 - Active energy kWh \(\text{positive/negative} \)
 - Reactive energy kvarh \(\text{leading/lagging} \)

DESCRIPTION
Features
- 3 true RMS voltage inputs
- 3 true RMS current inputs
- Class 0.5 accuracy for voltage, frequency and current
- Class 1 accuracy for real and reactive power or energy
- Configurable trip/control setpoints
- Configurable delay timers for individual alarms (0.02 to 300.00 s)
- 4 configurable relays (change-over)
- 1 “Ready for operation” relay
- Switchable relay logic
- 2 kWh counters (max. \(10^{12} \) kWh)
- 2 kvarh counters (max. \(10^{12} \) kvarh)
- CANopen / Modbus communication
- Configurable via CAN bus / RS-485 / Service Port
- 2 kWh counters (max. \(10^{12} \) kWh)
- 2 kvarh counters (max. \(10^{12} \) kvarh)
- CANopen / Modbus communication
- Configurable via CAN bus / RS-485 / Service Port (USB/RS-232)
- 24 Vdc power supply

Protection (all) ANSI #
- Over-/undervoltage (59/27)
- Over-/underfrequency (81O/U)
- Voltage asymmetry (47)
- Overload (32)
- Positive/negative load (32R/F)
- Unbalanced load (46)
- Phase shift (78)
- Overcurrent (50/51)
- df/dt (ROCOF)
- Ground fault
- QV monitoring
- Voltage increase
- Freely configurable time-dependent undervoltage monitoring for:
 - FRT (fault ride-through)

True RMS sensing
- Class 0.5 accuracy for voltage, frequency and current
- Class 1 accuracy for real and reactive power or energy
- Programmable relay outputs
- Configurable via CAN bus / RS-485 / Service Port
- Programmable threshold setpoints with individual time delays
- Optional wiring configurations for either single phase, three phase, or a combination of both
- CANopen / Modbus communication
- UL/cUL Listed
- CE marked
SPECIFICATIONS

Accuracy ... Class 0.5
Power supply .. 12/24 Vdc (6 to 32 Vdc)
Intrinsic consumption ... max. 5 W
Ambient temperature (operation) -20 °C (-4 °F) / 70 °C (158 °F)
Ambient temperature (storage) -40 °C (-40 °F) / 85 °C (185 °F)
Ambient humidity .. 95 %, non-condensing

Voltage ...
- Rated value \(\Delta\): [1] 69/120 Vac or [7] 400/690 Vac
- Rated voltage \(V_{ph-ground}\): [1] 150 Vac or [7] 600 Vac
- Rated surge voltage: [1] 2.5 kV or [7] 6.0 kV
- Measuring frequency .. 45 to 65 Hz
- Linear measuring range .. 1.25 × \(V_{rated}\)
- Input resistance .. [1] >0.5 MΩ
- [7] >2.0 MΩ
- Max. power consumption per path 0.15 W
- Current \(I_{rated}\) ... [1] ../1 A, [5] ../5 A
- Linear measuring range .. 3 × \(I_{rated}\)
- Max. power consumption per path <0.15 VA

Relay outputs .. isolated
Contact type ... Form C (change-over)
Contact material .. AgCdO
Load (GP) ... 2.00 Aac@250 Vac
- Pilot duty (PD) .. 1.00 Adc@24 Vdc / 0.22 Adc@125 Vdc / 0.10 Adc@250 Vdc

Housing ... Type Extrusion profile UM122
Dimensions .. 146 × 128 × 50 mm
Connection .. screw/plug terminals depending on connector 2.5 mm² (14 AWG)
Protection system .. IP20
Weight ... approx. 300 g

Disturbance test (CE) tested according to applicable EN guidelines

Listings .. UL/cUL listed (File No.: E231544), GOST-R

DIMENSIONS

```
<table>
<thead>
<tr>
<th></th>
<th>Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>128 mm</td>
</tr>
<tr>
<td></td>
<td>50 mm</td>
</tr>
<tr>
<td></td>
<td>146 mm</td>
</tr>
</tbody>
</table>
```

PART NUMBERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Rated PT secondary</th>
<th>Rated CT secondary</th>
<th>Mounting</th>
<th>Part Number (P/N)</th>
</tr>
</thead>
</table>
TYPICAL APPLICATIONS

General Application

In this general application the device is used as a transducer with monitoring functions. The control does not operate any breaker.

- PLC measuring data V, f, I, P_{act}, P_{react}
- Monitoring V, f, I, P_{act}, P_{react}

Generator Application

In this generator related application the device is used as a transducer with monitoring functions. The control can be used to open a breaker.

- Generator measuring data V, f, I, P_{act}, P_{react}
- Monitoring V, f, I, P_{act}, P_{react}

Mains Application

In this mains related application the device is used as a transducer with monitoring functions. The control can be used to open a breaker.

- Mains measuring data V, f, I, P_{act}, P_{react}
- Monitoring V, f, I, P_{act}, P_{react}